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Abstract

We propose Cellular Neural Networks (CNNs) for solving the visual-
feedback problem in robot guidance. In particular, we show how CNNs
provide the necessary image processing to guide an autonomous mobile
robot in a maze made of black lines on a light surface. The system consists
of a fuzzy controller performing the elementary navigation tasks fed by
the result of processing the image only by CNN techniques. We use this
solution to make some considerations on more difficult problems such as
curved line following and obstacle avoidance.

keywords: Cellular Neural Networks, Robot Vision, Fuzzy Logic.

1 ' Introduction

A challenge in automous robotics is navigation in unstructured environments
with vision-based algorithms. This problem has been tackled with sophisticated
image processing techniques, ranging from mathematical morphology to artifi-
cial neural networks, and partial solutions have been achieved: algorithms exist
to solve obstacle avoidance, cliff detection, autonomous highway driving or ac-
tive stereo vision for tracking. However, these methods require a large amount
of computing effort, forcing a trade-off between real autonomy and real-time op-
eration. To break this compromise, we propose using Cellular Neural Networks
(CNNs) (1, 2, 3], which are arrays of locally connected cells or neurons. CNNs
have two good points for solving the vision-based navigation problem : first of
all, they show a natural suitability for image processing and second, they have
direct VLSI implementation, allowing for real-time parallel computation. Still,
one needs to prove that CNNs have enough image processing capacity to enable
robot navigation. Therefore, our goal is to start with a simple problem, yet with
real life relevance: line following and landmark recognition in a maze [4, 5]. The
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solution shows to be a first step towards tackling more complex problems such

as curved line following or obstacle avoidance. . . '
Line (or equivalent marking) following is a classical problem in robot navi-

gation. Solutions found in the literature are either simp!e but with llmlt('?.d ca-
pability, either complex, facing realistic problems and using l‘éther complicated
hardware. An example of simple system is the ARGO pattl.ally au.tonomous
vehicle [6]. It is a normal passenger car fitted with an automatic steering mech-
anism, controlled by a 486PC. The PC processes the images taken l?y tv'vo.B /W
cameras with the aim of finding the right line of the .roafi. and k-eepmg it in the
appropriate position in the field of view. The processing 1s very simple, yet effec-
tive for the purpose. More complex systems are generally based on a computer
which is either on board (for large vehicles, e.g. (7, 8]), or r'el‘notely c.onnected
(e.g. [9]). In these examples images are processed by an addﬁltlonal unit, d.ue to
the necessity of high computing power. Besides line following, these vehichles
are capable of performing unstructured road navigation, target following and
obstacle avoidance.

The paper is organised as follows. First of all, we make a fast review of
Cellular Neural Networks and previous uses in robotics. Then, we present our
solution for guidance in a maze: a fuzzy controller fed by the information coming
from the CNN processing. We describe, then, the image processing in CNN
terms and we give some possibilities for hardware implementation and some
experimental results. Finally, we study how can we use the maze solution to
deal with curved line tracking and obstacle avoidance.

2 Cellular Neural Networks
2.1 The CNN paradigm

Cellular Neural Networks (CNNs) [1, 2, 3] are arrays of dynamical artificial neu-
rons (cells) with local connections only. This essential point has made hardware
implementation of large networks possible on a single VLSI chip (10, 11].

Typically, cells are organised in a fairly large two-dimensional grid and an
image pixel is assocated to one cell. In this way, CNNs can be used for massively
parallel focal-plane processing, avoiding the bottleneck caused by electronic im-
age loading. Moreover, distributed memory and a global control module can be
present on chip. In this way the CNN becomes a stored-program massively par-
allel processor known as the CNN Universal Machine- (CNN-UM) [12], which
is capable of executing a complex sequence of operations (analogic programS)
in real time. Therefore, CNNs are very good candidates as hardware platforms
for robot vision.

In this paper, we shall refer to the Discrete-Time CNN model (DTCNN
he}rle.:after) [3] HOWfWer, all operations described in the following can also be
Ecmil::;d uS_l]n% -;:'ontmuous-time. CNNs. The choice for DTCNNS relies on the
olnfs n:,vzlnaDlslg gf CI\}I]N chips. We are th.en forf:ed to resort t(? simulated

r either on FPGAs and simulations are faster if DTCNNs
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are used. The DTCNN core operation is described by the following system of
jterative equations:

zij(n+ 1) = }: Ax—ig—j sign z;;(n) + Z By_ii—juij(n) + 1] (1)
kleN(if) kleN(ij)

where:

1;; is the state of the cell (fu.auron) in position i, that corresponds to the image
pixel in the same position; _

u;; is the input to the same cell, representing the luminosity of the correspond-
ing image pixel, suitably normalised;

A is a matrix representing the interaction between cells, which is local (as
specified by the fact that summations are taken over the set N of indexes
neighbour cells) and space-invariant (as implied by the fact that weights
depend on the difference between cell indexes, rather than their absolute
values);

B is a matrix representing forward connections issuing from a neighbourhood
of inputs.

I is a bias.

N(i,7) is the set of indexes corresponding to cell ij itself and a small neigh-
bourhood (e.g. cell ij and its 8 nearest neighbours). Due to the locality
of the computation, implied by the summation over this neighbourhood,
and space-invariance, implied by the differences of indexes in matrices A
and B in equation (1), it is sufficient to define A and B for a few instances
of the indexes, so that they may be represented by small matrices.

The operation performed by the network is fully defined by the so-called cloning
template {A, B, I} (see examples in Table 2). Moreover, under suitable condi-
tions, and with time-invariant input u, a steady state is reached. This steady
state depends, in general, on initial state values and input v. Images to be
processed are fed to the network as initial state and/or input, and the result
taken as steady state value, which realistically means a state value after some
time steps (ranging normally from 10 to 100 according to the task).

Equation (1) can be generalised by including nonlinear and delayed interac-
tions [12]. While non-linearity in the feed-forward (connection to input) pa'th
can be exchanged for a suitable linear-connection-based algorithm (13], nonlin-
ear feedback connections allow for real additional functionality.

Unlike most neural networks, very few parameters determine the CNN func-
tionality. So, it is possible to explicitly design (14] a cloning template for a
specific task (besides learning it, e.g. [15]), and to broadcast such p‘argmeters.to
all neurons. The cloning template can be understood as an analogic instruction
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for the CNN. Analogic instructions can then be combined into analogic (ana
log/logic) programs, using the global controller and local memory. SophiSticat&i
image processing can then be achieved in real time by the suitable sequence

cloning templates. Many cloning templates and analog algorithms haye beey

designed for the most diverse tasks [16].

2.2 CNN in Robotics : Previous Approgches

The previous applications of Cellular Neural Networks in robotics can be clas.
sified in three main groups: optical flow and time-to-contact estimation, depth
estimation by stereo vision and simple line following.

Optical flow estimation is a very rich source of information for assessing
the relative motion with respect to the surrounding environment or for track.
ing a moving object. Although usual algorithms are computationally costly,
regularisation-based approach to optical flow can be cast into a CNN-like arch;.
tecture to achieve local parallel computation [17]. Also, a few one-dimensiong
arrays are sufficient to make an estimation of the velocity field sourca (focys
of expansion) and magnitude permits evaluation of direction and distance
objects for obstacle avoidance purposes [18]. However, the CNN models used
for this task are not standard and do not accomodate into general purpose
CNN-UM chips.

Stereo vision is widely used for global estimation of depth information.
is also a computationally-intensive task, very demanding for traditional archi-
tectures. Cellular Neural Networks can be applied to real-time solution of the
stereo-matching problem [19]. Hardware implementation of such algorithms [20)
is very efficient, but it can be necessary to resort to a multi-chip assembly
deal with high-definition images [21].

A simple line-following task has been addressed in reference [22]. Even
the task is not complex, simplicity and robustness of the solution is remarkable.
Very limited CNN-based hardware resources are proved to perform efficiently

in real-time.

3 Navigation in a maze

3.1 The Visual Control System

We have decided to start our robot vision CNN programme by dealing with
a simple problem such as driving a robot in a maze made of black lines on
light background. Despite its simplicity, this problem involves key features
guidance such as navigation (line following) and landmark recognition {cross
ings and turns). Although there exist simpler solutions, we consider it to be
significant benchmark to prove the efficiency of CNNs.

The mobile robot architecture considered'is very close to a that of a stand{"'d
car, with one driving and one steering wheel. In this case. the line following
problem can be solved by adapting a well established fuzzy controller solving
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Figure 1: Line parameters. In the situation portrayed A,, is positive, A is
positive and X, is negative (i.e. left)

the car backer-upper problem [23]. This fuzzy controller delivers the steering
angle given the distance X, of the centre of the steering wheel from the line to
be followed and the angle A,, made by the axis of the robot and the line. This
is portrayed in Figure 1, where A,; is the steering angle.

The robot guidance problem is then split into two processes: a visual pro-
cessing module and the fuzzy controller. The first is in charge of exctracting
the relevant information from the image, namely the number of lines in sight,
and its mathematical parameters, and take a decision on what line to follow.
The parameters of this line (distance and angle) shall be delivered to the fuzzy
controller. The fuzzy rule base is built out of driving experience inspired in
reference [23]. The consequent sets are simplified to singletons: this scheme
allows for a simpler on-line implementation because it requires fewer calcula-
tions. The values for the singletons are adjusted according to the robot platform
steering capabilities. The controller, fed with distance X, and angle Agn to the
line uses 15 rules to deliver the steering angle Ay.. They are listed in Table 1.
Membership functions for X, and A, are shown in Figure 2. Consequents for
A,, are 0 for Zero and +20, +40, £80 for Small, Medium, Large Left/Right
respectively.

The global control strategy works as follows. With a single line in sight,
the robot tries to align itself on it as fast as possible. When a second line
gets into the view, the type of bend or crossing is assessed, by examining the
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Table 1: Fuzzy control rule set for A,;.

Ath T x i
ositive Large  Positive Small Zero . cga.twe l.-na" T
Left Medium Left Small Right Medium Right  Medium l.hgm %
X, Centre Medium Left Small Left ?cro Small Right Mcdiumn',
c Right Large Left Medium Left Medium Left Small Left Medium R
S— —lum R,
1
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-1..;’0 -100 50 0 0 100 150

Figure 2: Mexﬁbership functions for X, and A,. |

relative positions of the two lines. The possible actions are, then, evaluated. If
more than one is possible (e.g. go straight on or turn right), then a command
from a higher order level is required (in our experiments we just implemented
a pre-defined list of actions). If a turn is called for, the robot continues on the
current line until the crossing is at a pre-defined optimal distance (determined
by the maximum steering angle). Then, the algorithm just switches the line to
be followed. In this manner, we are capable of guiding the robot over the entire
maze.

3.2 Image Processing

In the previous section we have defined the tasks of the image processing module,
namely, landmark recognition (crosses and turns) and extraction of line parame-
ters. Actually, landmark recognition just amounts to determine how many lines
are in sight. From those, we need to compute X. and A,;. However, prior to
line recognition and Parameter extraction, the image needs to be acquired and
Preprocessed. Acquisition shall depend on the actual implementation and will
_be treated below, while preprocessing will consist in cleaning and enhancing the
Image contrast. Our goal is to perform all image processing operations using
only sequences of CNN templates, in CNN terms, a CNN Universal Machine
programme. .

For preprocessing we use the so-called small-object-killer template (see Ta-
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Table 2: Templates used in the processing stage.

A B I
1 1 1
small object killer 1 2 1 0 0
1 1 1
0 0 0
left cdge 2 ’ ( -1 0 O -1
0 0 0
-1 05 1 05 -1
-1 1 1 1 -1
vertically-tuned filter 2 -1 =1 § -1 =1 -13
-1 1 1 1 -1
-1 05 1 05 -1
N 0 1 0
connected-component detector 0 2 o 0 0
0 -1 0

ble 2) to make a preliminary cleaning and binarisation of the acquired image
(Figure 3 (a) and (b)).

The calculation of the parameters of lines visible in an image is universally
performed by the Hough transform [24], but this is a computationally intensive
technique that does not lend itself to efficient implementation on a CNN. We
have then to devise a different approach.

In order to perform direction and position evaluation, first we need to get
efficiently a thin line. For this purpose, we resort to design [14] a cloning tem-
plate that extracts only one of the two edges of a stripe (it actually extracts only
those parts of edges of black-and-white objects that lie on the left of the object
itself). This template is given in Table 2, and its effect is shown in Figure 3
(c)- To deal with approximately horizontal lines, we extract the upper edge by
using a rotated version of this template.

The line position and orientation computation is based on two steps. We
assume that a maximum of two, approximately orthogonal lines are within sight
of the camera. This is not very restrictive, because we chose a setup in which
the camera is oriented at an angle that was chosen as a compromise between
looking a reasonably long distance forward, and avoiding a large deformation
due to perspective.

The first step is a directional filtering that extracts lines approximately ori-
ented along two orthogonal directions. During normal operation these directions
are the vertical and horizontal ones, corresponding to the line being followed
and a possible orthogonal line following a bend or crossing. However, when the
robot is turning or is largely displaced from all lines, it is necessary to switch to
diagonal directions. As this situation is known to the controller, it will signal
to the image processing stage which filter should be used.

Operation of a vertically-tuned filter (Table 2) is depicted in Figures 4 and 5.
Other direction-selective filters are obtained by rotation of this cloning template.
After the tuned filters have been applied, we get two images containing at most
one line. Direction and position of the line is then extracted by performing
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Figure 3: Original image, taken from the actual camera with size 60 x 45 pixes
(a), cleaning and binarisation (b), left edge (c), connected-component detecto

-intermediate result (d), final result (e).
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Figure 4: Vertical line extracting filter: original image (a), result (b).

a horizontal and vertical projection in order to read the positions of the first
and last black pixels of the two projections. These four numbers, together with
the information about which extreme of the line is closer to one of the borders
of the image, are enough to compute direction and position of the line to the
maximum precision allowed by image definition. '

Extraction of the needed projections can be done by means of the so-called
connected-component-detector cloning template (Table 2). Operation of such
template at an intermediate and final stage of processing is depicted in Fig-
ure 3(d,e). It is apparent that besides obtaining the desired projections, also
the information about which extreme is closer to the border can be obtained
from examination of intermediate results.

Using the CNN operation described above, by simple trigonometry, it is easy
to obtain the parameters that are necessary for navigation, namely, angle and
distance. Such parameters are passed to the controller.

A strong-point of CNN processing is its capability of dealing with low quality
or ill defined images, as shown in Figure 6.
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Figure 5: Vertical line extracting filter applied to the image of a crossing (a)
and after edge extraction (b): result (c).
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Figure 6: Successful processing of an image with low contrast.
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3.3 Hardware Implementation
We have been considering two hardware implementations for a robot tg be
guided with such algorithms. .

The first one is a small autonomous three-wheeled cart driven by a motq;
mounted on the single front wheel, that also steers by means of a second motoy.
The cart is approximately 27cm long, 18cnr wide, 16cm tall, and weights about
4kg. A PAL camera is fitted on the front of the robot, oriented downwards, 3¢
from the horizontal. Images are grabbed and digitised by dedicated circuitry
implemented in a CPLD (ALTERA EPM7128STC100), which also performg
image decimation to reduce unnecessary definition. Image processing (CNN
simulation) is performed in a DSP (TMS320¢32), and the control system (fuzzy
rule base) is implemented in a 386-microprocessor-based microcontroller. Image
size is 60 x 45 pixels and lines on the floor are obtained using a 2cm wide black
tape. A power board feeds the motors, and batteries are carried on board. Ip
this way the robot it is completely autonomous. The image processing stage
can currently process one image per second. We estimated by simulation that
this allows the robot to move smoothly at a speed of 2.5 cm/s. Of course if
CNN chip were used instead of the DSP, it would be possible to reach a much
higher speed. ‘

The second has similar mechanic characteristics but is controlled by an Xil-
inx FPGA development board. This solution is not fully autonomous since

requires external power supply.

3.4 Experimental Results

The robot layout and the algorithms have been thoroughly tested by employing
a realistic simulation of the vehicle realised in Working Model, interfaced with
simulation of the fuzzy control and image processing system realised in Matlab.
All mechanical and physical parameters of the actual robot were taken into
account (going from size and weight to wheel and floor materials), as well as
actual processing times of the mounted board, that has already been successfully
tested. Mechanical mount and electrical testing of the robot is currently being
completed, and we expect the robot to be fully functional soon. Meanwhile,
Figure 7 shows a simulation of the path followed by the robot, starting a little
displaced (A¢n = 10°,X. = 4cm) and turning at a crossing. For each position
of the robot, a camera shot is assumed and the geometrical parameters of the
robot position are calculated and passed to the controller.

4 Further Perspectives

The setup described in section 3 can be extended to other navigation problems
provided we are able to define a virtual line to be followed. The parameters of
this virtual line are then sent to the fuzzy controller. Bearing this in mind, we
can consider more evolved problems such as curved line following or obstacle
avoidance.
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Figure 7: Path followed by the front wheel of the robot. Axis marking in meters.

4.1 Curved Line Following

Curved lines can be addressed by modifying the algorithms used for continuous
straight lines. An accurate driving strategy has to take into account the follow-
ing requirements: small curvature lines should be followed as close as possible,
while for large curvature ones, the manoeuvre should be globally optimised,
much in the same way as turning at a crossing. For this purpose, we estimate a
short-term approximation to the curved line which is a the tangent line at the
closest end (line a in Figure 8), and a long-term one which is the secant line join-
ing farthest ends of curve in the image (line b in Figure 8). When the long-term
approximation is similar to the short-term one, close following is possible using
of the tangent line. When the angle difference between the two approximations
is large, then substantial correction of the steering angle is necessary. This can
be performed by adding, for instance, a supervisory fuzzy control algorithm us-
ing the information of both the tangent and the secant. Rules are of the form
if secant is more to the right than tangent, then correct steering angle towards
right, and if secant is more to the left than tangent, then correct steering angle
towards left.

This correction can also be applied in two other cases: when coarse sampling
in time is being used or when speed is relatively high so that the robot has moved
a long path before the evaluation of the following image. The tangent line can
then be estimated by the projection approach described in Section 3, but just
projecting an area of few lines mear the bottom of the image instead of the
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Figure 8: Tangent and secant to the curve.

whole image, so as to obtain a short-term secant, resembling the tangent (line
¢ in Figure 8). This solution, however, is very sensitive to the image noise
quantisation.

An alternative approach is based on computing one or more intermediate
projections. It is equivalent to making a piece-wise-linear approximation of
curve. The bottom projection delivers the short-term approximate line, while
other projections can be used for correction.

4.2 Obstacle Avoidance

Obstacle avoidance involves two main tasks which are recognising obstacles
such and, then, driving to avoid collision.

Obstacle recognition depends strongly on the characteristics of the environ-
ment. For our purposes, we consider an obstacle anything that develops in
vertical dimension, departing from the floor level. This means that we shall
consider colour, luminosity, texture or shape as indicators. These could just
patterns on the floor and make no obstacle for the robot.

Solutions exist for binocular vision by stereo-matching-based range-finding
(see for instance references (19, 20]). For high-definition or foveated imaging
we can also use an optical-flow-based strategy (e.g. [17, 18]). Still we look
solutions using our current hardware based only on monocular low-definition
vision. We believe that working with such limitations will prompt us to look
for solutions that optimise simplicity and cost. ,

' A vision-only approach is based on checking the deformation of a suitable
lfght pattern projected ahead. For instance, if we project a straight line
light it will remain straight and in in a known position. When an obstacle
(or level change, such as a step) is present, the line is deformed and displaced
(Flgur? 9 -(a)). It is easy to recognise such situation by CNNs, for instance,
0 eine tudosofperived it on te et e (P )
be convenient to trgcnli :)(:)n' e e Lruely-14TES amount: of respusces I n‘lay
Jects once they are recognised rather than performing



Cellular neural networks and mobile robot vision
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(a) (b)

Figure 9: Line deformation in the presence of an object (a) and projection of
the deformed line (b)-

ol
| (a)

Figure 10: A corridor with an obstacle (a). A CNN template can fill the area
available to move the robot (b). A skeletonisation of the available area (c).

(b) (c)

recognition from scratch at every step. Efficient CNN-based tracking strategies
can be based on active contours (25, 26]. . .
An obstacle-avoiding driving strategy can be built on the line-following ap-
proach as follows. Suppose the robot is driving along a corridor with an obstacle
in its way (Figure 10 (a)). Once the obstacle is recognised, we can use its con-
tours and boundaries of the hallway as limits for the path. We apply then a
CNN template to fill all available area by propagation (Figure 10 (b)). We can
then take the skeleton of the shape obtained (Figure 10 (c)), or just draw a line
pointing to the centre of the farthest and widest end of the shape obtained.

5 Summary and Conclusions

We have shown how the combination of Cellular Neural Network image process-
ing and a fuzzy control can solve the robot vision problem in 8 simple case such
as the motion in a maze. The image processing steps & be understood as an
analogic programme in CNN-UM terms.

While the current implementation is based on software realisation of build-
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i ammable hardware, the target implementation is baseq
;ggec?;?-c:jr;onszregljﬂ CNN hardware, yielding substantially enhanced Perfo;.
mar'}?;-e solution for this problem gives a hint for studj.ring more ?Omplicated
problems such as curved line following or obst'acle avo.ldance. Still, thig
first step towards a wider use of CNNs in rob.otlcs for visual fee.dback. Furthe,
contributions should stress the use of CNN chips on a hardware 1mplementmgi0[l
and the formulation of the image processing steps in CNN terms.
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